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Abstract
In modern scientific research, multiblock missing data
emerges with synthesizing information across multi-
ple studies. However, existing imputation methods for
handling block-wise missing data either focus on the
single-block missing pattern or heavily rely on the
model structure. In this study, we propose a single
regression-based imputation algorithm for multiblock
missing data. First, we conduct a sparse precision matrix
estimation based on the structure of block-wise missing
data. Second, we impute the missing blocks with their
means conditional on the observed blocks. Theoretical
results about variable selection and estimation consis-
tency are established in the context of a generalized
linear model. Moreover, simulation studies show that
compared with existing methods, the proposed imputa-
tion procedure is robust to various missing mechanisms
because of the good properties of regression imputation.
An application to Alzheimer’s Disease Neuroimaging
Initiative data also confirms the superiority of our pro-
posed method.
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1 INTRODUCTION

With widespread data transmission and integration, multimodality or multisource data emerge
from modern scientific research. Epidemiological analysis, clinical trials, and genome-wide stud-
ies all need to synthesize complementary information across multiple type testings. However, a
common characteristic of multimodality data is that groups of observation can be missing entirely
for a specific modality. In the study on Alzheimer’s Disease (AD) Neuroimaging Initiative (ADNI)
study, almost all subjects have magnetic resonance imaging (MRI) information to detect and diag-
nose the progression of AD. However, not all of the subjects are willing to consent to an invasive
procedure. For instance, only half of the subjects are collected for cerebrospinal fluid (CSF); many
lack proteomics information, especially with normal cognition. Such kind of block-wise missing
pattern hampers the analysis of multimodality data.

The most straightforward approach is to pool observations from multiple sources together
and only keep the complete data. However, discarding subjects with missing measures may
challenge underlying randomization rules or lose a great deal of information, let alone deal
with the situation that complete cases are very few or do not exist. Therefore, several meth-
ods have been recently developed to fully take advantage of multimodality data and target
block-wise missing settings. The first class of approaches was inspired by multitask learning
(Ando et al., 2005; Argyriou et al., 2008; Liu et al., 2012). Yuan et al. (2012) proposed the incom-
plete multisource feature (iMSF) learning method. Taking the ADNI data above as example, if
all samples accept MRI measurement, then subjects can be classified into four groups based
on their missing patterns: (1) CSF, MRI; (2) proteome, MRI; (3) CSF, proteome, MRI; and (4)
MRI. iMSF transforms multiple-modality learning into four prediction tasks with four differ-
ent regression models and combines them by minimizing the summation of the loss functions.
One strong constraint involved in iMSF is that regression models, including a specific modal-
ity, shares the same set of important predictors in this modality. This assumption would be
inappropriate when modalities are highly correlated. Another challenge is that the model dimen-
sion involved in iMSF grows with the number of modalities exponentially. To address this
issue, Xiang et al. (2014) and Li et al. (2018) refined and recombined the subtasks by utilizing
shared covariates repeatedly and imposing different weights for their corresponding param-
eters. As a result, the number of parameters decreased through a superposed weight vector.
However, explaining the bilevel coefficients in real-world applications is difficult, and the coef-
ficients of the whole model (CSF, proteome, and MRI) are inaccessible if no complete case
exists. Moreover, other existing multimodality data learning methods heavily rely on the struc-
ture of the linear regression model. For example, Yu et al. (2020) proposed a direct optimization
approach that needed to estimate the covariance matrix of predictors and the cross-covariance
vector between the predictors and the responses. Inspired by the single regression imputation
method, Xue and Qu (2021) and Xue et al. (2021) permutated the original covariate matrices into
multiple one-block missing submatrices for the imputation step. Consequently, unbiased esti-
mating equations or other combination approaches for deriving overlapped imputation values
are crucial in this processing mode. Thus, their method is model-based and not easy to gener-
alize, and a highly flexible prediction method for block-missing multimodality data should be
developed.

This study proposes a two-step algorithm to analyze block-missing multimodality data under
a generalized linear model (GLM). In the first step, we estimate covariance matrix or precision
matrix under high-dimensional multivariate normality assumption with block-wise missing data,
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HE et al. 3

thus allowing for imputation with mean conditional on observed blocks. Several methods are
available to estimate the covariance matrix. For complete data Friedman et al. (2008), Yuan and
Lin (2007), and Banerjee et al. (2008) proposed a group least absolute shrinkage and selection
operator (GLasso) approach, which provided 𝓁1-norm regularized maximum-likelihood estima-
tion of precision matrix. Lam and Fan (2009) and Fan et al. (2009) further developed extended
versions: SCAD GLasso and adaptive GLasso. For missing data, Städler and Bühlmann (2012)
proposed MissGLasso estimator of the precision matrix when only one set of predictors was miss-
ing. Given that all the above methods need a sample covariance matrix as an initial estimator, Yu
et al. (2020) reconstructed the sample covariance matrix as a linear combination of the identity
matrix, the estimates of the intra-modality covariance matrix, and the cross-modality covariance
matrix for multimodality data. However, the induced coefficients complicate the calculation.
Therefore, we take the same spirit of Yu et al. (2020)’s work but simplify the procedure to estimate
the covariance matrix and examine its sparsity via the Lasso-type penalized likelihood. In the sec-
ond step, we impose a sparsity penalty to estimate the coefficients for the high-dimensional GLM
based on the imputed data.

This study contributes to the existing literature in three aspects. First, we design an effi-
cient imputation algorithm to address multiple block-wise missing data that may not contain
any complete case. When complete cases existing, our method can be seen as an improvement
of traditional regression imputation, since the information of incomplete groups is encoded
in our final estimation. A sparse covariance matrix estimate is a byproduct of the proposed
algorithm. To the best of our knowledge, this study is the first one to provide sparse covari-
ance matrix estimation tailored to the multiblock missing data. Second, the proposed method
conducts prediction for high-dimensional GLM with multiblock missing data. In contrast, most
existing works (e.g., Xiang et al., 2014; Xue & Qu, 2021; Yu et al., 2020) have mainly focused
on linear model prediction, thereby becoming invalid in the presence of a binary or categori-
cal response. An exception in this direction is the work of Yu and Hou (2022), who proposed a
weighted nearest neighbor classifier to solve the binary classification problem. However, their
method requires the existence of complete cases. Moreover, the imputation step in the pro-
posed method is independent of the subsequent prediction task. Therefore, our approach can be
easily extended to various circumstances with different prediction targets. Finally, we establish
theoretical results for the proposed estimator in the GLM context. In particular, the conver-
gence rate of our estimator is comparable with that derived in Fan and Lv (2013) and Xue and
Qu (2021).

The remainder of this paper is organized as follows. Section 2 introduces the motivation and
the proposed method. Section 3 presents the theoretical results about the estimates of the covari-
ance matrix and establishes the predictor selection consistency. Sections 4 and 5 demonstrate
the performance of the proposed method through simulation studies and an application to the
ADNI dataset, respectively. Section 6 concludes the paper. All technical proofs are provided in
Appendix S1.

2 MOTIVATION AND METHODOLOGY

Some generic notations used in this paper are collected here. If A is a n ×m matrix, then AB,D
denotes a submatrix of A, where B and D are some sets of row and column indices, respectively.
For vector a, ab denotes a subvector of a, where b is an index set.
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4 HE et al.

F I G U R E 1 Left panel: an example of block-missing multimodality data. Right panel: single-block missing
pattern. The shaded blocks are observed while the white blocks are missing.

2.1 Background and problem setup

Let Y = (y1,…, yn)⊤ be a sample of response vector y, and X = (X1,…,Xp) be an n × p complete
design matrix, of which rows are independent samples of a random vector x = (x1,…, xp). The
covariance matrix of x, denoted as Σ, is positive definite. On the basis of the missing patterns
across all modalities, we divide samples into R disjoint groups. Let n(r) denote the number of
observations allocated into the rth group, and n =

∑R
r=1n(r). For r = 1,…,R, let p(r) be the number

of completely observed predictors in the rth group, G(r) be the index set of observations in the rth
group, and XG(r),o(r) and XG(r),m(r) be the observed and missing parts of the design matrix in the rth
group, where o(r) and m(r) are the index sets of the observed and missing covariates, respectively.
They are marked as shaded blocks and white blocks in Figure 1. For simplicity, we omit subscript
G(r) and abbreviate XG(r),o(r) and XG(r),m(r) as Xo(r) and Xm(r), respectively, when the context is clear.
Let XG(r) = XG(r),m(r)∪o(r) denote the samples in Group r.

The GLM assumes that the conditional distribution of y given x belongs to the exponential
family with the following density function:

f (y; 𝜂, 𝜙) = exp{y𝜂 − b(𝜂) + c(y, 𝜙)}, (1)

where 𝜂 = x⊤𝛽, 𝛽 = (𝛽1,…, 𝛽p)⊤ ∈ Rp is the regression coefficient vector, b(⋅) and c(⋅, ⋅) are known
functions, and 𝜙 > 0 is the dispersion parameter. Assume that b(⋅) is smooth and convex with
b′′(⋅) is bounded away from 0 and ∞. Up to an affine transformation, the log-likelihood function
given by the sample is

𝓁n(𝛽) = n−1[Y⊤X𝛽 − 1⊤b(X𝛽)].

To ensure identifiability and interpretability for a high-dimensional model, we typically assume
that the true regression coefficient vector 𝛽∗ is sparse and consists of only s

𝛽
nonzero components.

Let S
𝛽
= {j ∶ 𝛽∗j ≠ 0} and Sc

𝛽

= {j ∶ 𝛽∗j = 0} correspond to relevant and irrelevant covariates,
respectively.
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HE et al. 5

Under the GLM setting, coefficients in 𝛽 can be estimated by minimizing the penalized
negative log-likelihood function as follows:

Qn(𝛽) = −n−1[Y⊤X𝛽 − 1⊤b(X𝛽)] +
p∑

j=1
p
𝜆
(|𝛽j|), (2)

where p
𝜆
(t) with t ∈ [0,∞) is a penalty function indexed by the regularization parameter 𝜆. To

ease the presentation, 𝜆 in (2) is denoted as 𝜆
𝛽
. Here, we select the Lasso penalty as an example.

Considering that the focus of our method is the imputation step, we can easily apply our method
to other regularization forms.

2.2 Regression imputation with single-block missing pattern

Regression imputation is a common approach for handling missing covariates. It substitutes Xm(r),
r = 1,…,R by its mean conditional on the observed covariates, E(Xm(r)|Xo′(r)), where o′(r) ⊂ o(r).
The estimate of E(Xm(r)|Xo′(r)), denoted as ̂E(Xm(r)|Xo′(r)), heavily relies on a kind of single-block
missing (SBM) structure, as shown in the right panel of Figure 1, regardless of specific estimation
methods. In the literature, some low-rank matrix completion methods (Cai et al., 2016; Mazumder
et al., 2010) relied on an SBM to recover missing entries. Then, a question about how to choose
o′(r) or SBM arises immediately. One traditional approach is to take o′(r) = o(r) and only use
complete observations to estimate the cross correlation between xm(r) and xo(r) (e.g., Städler &
Bühlmann, 2012). As shown in the left panel of Figure 1, Groups 1 and 2 form a SBM, which can
be utilized to estimate E(Xm(2)|Xo(2)).

However, this traditional approach is applicable only when enough complete observations
exist. Moreover, the information incorporated in other groups is omitted to some extent in the
imputation step. Xue and Qu (2021) adopted a different approach and selected all available o′(r),
where o′(r) is not unique. In other words, by rearranging the original data, they utilized all SBMs
for imputation. For example, as shown in Figure 1 (right panel), three SBMs are used for imput-
ing Xm(2). This method results in several problems. First, the whole imputation efficiency may be
dramatically affected by the minimum sample size group. Moreover, the number of SBMs could
grow exponentially with the number of modalities, thereby increasing the computation complex-
ity. Finally, many homogeneous imputation values generated by the above process need to be
integrated. Directly stacking all the values increases the computation burden and leads to a biased
estimator because it destroys the randomness of the experiment design.

2.3 Regression imputation with multi-block missing pattern

Suppose that x follows a joint Gaussian distribution with mean 𝜏 and covariance matrix Σ.
This distribution assumption is used only to motivate our idea. Later, we will show that
the implementation is entirely independent of this assumption. The precision matrix of x
is denoted by Θ. Then, given xo(r), r = 1,…,R, xm(r) follows a Gaussian distribution with
mean 𝜏m(r) + Σm(r),o(r)Σo(r),o(r)(xo(r) − 𝜏o(r)) and covariance Σm(r),m(r) − Σm(r),o(r)Σ−1

o(r),o(r)Σo(r),m(r) (Lau-
ritzen, 1996). Thus, in terms of Θ, the conditional distribution can be re-expressed by (Städler &
Bühlmann, 2012)
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6 HE et al.

xm(r)|xo(r) ∼
(
𝜏m(r) − Θ−1

m(r),m(r)Θm(r),o(r)(xo(r) − 𝜏o(r)),Θ−1
m(r),m(r)

)
.

For the missing mechanism, we take a setting similar to that in Yu et al. (2020). We define Oij =
1{Xij is observed}, and Nmin = minj,k∈{1,…,p}

∑n
i=1OijOik. Assume that the first sample moment

𝜏 j =
n∑

i=1
OijXij∕

n∑

i=1
Oij, j = 1,…, p,

and the second sample moment

̂Σjk =
n∑

i=1
OijXijOikXik∕

n∑

i=1
OijOik, j, k ∈ {1,…, p},

are unbiased estimators of E(xj) and E(xjxk), respectively.
Without loss of generality, let 𝜏 = 0. That is, the observations of every predictor are centered

to have mean 0. Then, the best linear unbiased estimate of Xm(r) is −Xo(r)Θo(r),m(r)Θ−1
m(r),m(r). Thus,

deriving the estimate of the precision matrix with multiblock missing data is desirable.

2.4 Sparse estimate of 𝚯

Suppose that each column of Θ is k-sparse. Then, to bound the error of the estimator of Θ in 𝓁1,
our method bears similarity to the approach of Yuan (2010) but is valid in the case of multiblock
incomplete data. Let Xij denote the element of X at the ith row and jth column, and Xi,−j denote
the ith row of X with the jth column removed. Under the high-dimensional Gaussian graphical
model setting, a vector 𝜃(j) ∈ Rp−1 exists, such that

Xij = Xi,−j𝜃
(j) + 𝜀ij, i = 1,…,n, j = 1,…, p,

where 𝜀ij is independent of Xi,−j and Var(𝜀ij) = Θ−1
jj . Let 𝜃(j)k be the kth element of 𝜃(j). Since 𝜃(j)k =

Θjk∕Θkk, then we have

Θjj = (Var(𝜀ij))−1
, Θ−j,j = −(Var(𝜀ij))−1

𝜃

(j)
, (3)

where Θ−j,j is the jth column of Θwith the jth row removed. Thus, a sparse estimator of Θ can be
obtained by regressing Xij over Xi,−j, i = 1,…,n with a neighborhood selection (Meinshausen &
Bühlmann, 2006), if the data are complete. Specifically, the Lasso estimate of 𝜃(j) is given by

arg min
𝜃
(j)∈Rp−1

{

n−1
n∑

i=1
(Xij − Xi,−j𝜃

(j))2 + 𝜆
𝜃
||𝜃(j)||1

}

. (4)

To apply this estimation procedure to multiblock missing data, following Witten and Tibshi-
rani (2009), we reformulate the optimization problem in (4) as

̂
𝜃

(j) = arg min
𝜃
(j)∈Rp−1

{1
2
𝜃

(j)⊤
̃Σ−j,−j𝜃

(j) − ̃Σ⊤−j,j𝜃
(j) + 𝜆

𝜃
||𝜃(j)||1

}
, (5)
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HE et al. 7

where ̃Σ is an initial estimator of Σ, ̃Σ−j,j is defined in the same manner as Θ−j,j in (3), and ̃Σ−j,−j
is the submatrix of ̃Σ with the jth row and jth column removed. We assume that ̃Σ satisfies the
following condition:

Condition 1. (“Good” approximation) Pr
(
|| ̃Σ − Σ||max ⩾ V1

√
log p∕Nmin

)
⩽ V2(n, p), V1 > 0

and V2(n, p)→ 0.

If x is sub-Gaussian, then we can take the sample covariance matrix as the initial estima-
tor, that is, ̃Σ = (̂Σjk), j, k = 1,…, p. If x follows a heavy-tailed distribution, then robust initial
estimators, such as the median of mean estimator

̃Σ = (𝜎̃jk), with 𝜎̃jk = median of
{

XijXik, Xij and Xik are observed
}n

i=1,

can be adopted. Other robust initial estimators that satisfy Condition 1 can be found in
Avella-Medina et al. (2018).

The optimization objective (5) is not convex when ̃Σ is not positive semi-definite due to missing
blocks. Thus, according to Datta and Zou (2017), the nearest positive semi-definite matrix of ̃Σ,
given by

̂Σ+ =∶ arg min
Σ∈Σp

pos

|| ̃Σ − Σ||max,

is a more suitable substitution, where Σp
pos is the set of positive semi-definite matrices. Finally,

after replacing ̃Σwith ̂Σ+, the estimate of 𝜃(j) can be obtained from (5) using the coordinate descent
algorithm of Witten and Tibshirani (2009). In this study, we offer another efficient and convenient
procedure.

We generate a random B × p matrix Z with entries being independently distributed according
to the standard normal distribution, where B = O(n) and B > n. In practice, 2n is an appropriate
value for B. Let ̃Z = ZC, where the upper triangular matrix C is the Cholesky factor of ̂Σ+, that is,
C⊤C = ̂Σ+. Finally, by replacing X with ̃Z in (4), we can obtain estimates ̂𝜃(j), j = 1,…, p with the
following reformulation of (5):

arg min
𝜃
(j)∈Rp−1

{

B−1
B∑

i=1
( ̃Zij − ̃Zi,−j𝜃

(j))2 + 𝜆
𝜃
||𝜃(j)||1

}

, (6)

and the corresponding mean squared error of the residual is

̂Var(𝜀ij) = B−1
B∑

i=1
( ̃Zij − ̃Zi,−j ̂𝜃

(j))2.

Naturally, the estimator of Θ can be obtained as follows:

̃Θjj = (̂Var(𝜀ij))−1
,

̃Θ−j,j = −(̂Var(𝜀ij))−1
̂
𝜃

(j)
. (7)

It can be seen that ̃Z is only used for copying the correlation structure among predic-
tors. Since ̃Z is complete, estimating Θ with ̃Z will be more convenient than with original
incomplete X .
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8 HE et al.

Algorithm 1. Variable selection with block-missing data

Input: Y , X .
1 Compute the sample covariance matrix ̃Σ for X ;
2 Find the nearest positive semi-definite matrix ̂Σ+ of ̃Σ;
3 Generate a random B × p matrix Z with standard normally distributed entries;
4 Perform Cholesky Decomposition to ̂Σ+ and let ̃Z = ZC, where C⊤C = ̂Σ+;
5 Compute ̂𝜃(j) and the corresponding mean squared error ̂Var(𝜀ij) with Lasso regression

(6), for j = 1,… , p;
6 Obtain estimate ̃Θ by formula (7) and make symmetrization to get ̂Θ;
7 Replace the missing blocks in X with ̂Xm(r) and get the new design matrix ̂X ;
8 Solve optimization problem (9) and get ̂𝛽;

Output: ̂𝛽.

Considering the symmetry of Θ, we set ̂Θ = arg minΘ∈Θp
sym

||Θ − ̃Θ||1, where Θp
sym is the set of

symmetric matrices.
Then, we replace the missing blocks in X with the imputation values for Xm(r) as

̂Xm(r) = −Xo(r)̂Θo(r),m(r)̂Θ
−1
m(r),m(r) (8)

and denote the new design matrix by ̂X . In the final step, we can obtain the estimate ̂
𝛽 by solving

the following optimization problem

min
𝛽

{
−n−1[Y⊤

̂X𝛽 − 1⊤b(̂X𝛽)] + 𝜆
𝛽
||𝛽||1

}
. (9)

For clarity, the computing algorithm and pseudo code are described below (Algorithm 1).

3 THEORETICAL RESULTS

In this section, we provide the theoretical foundation of the proposed method. Beforehand, some
additional notation is collected. Let (Σ) = Λmax(Σ)∕Λmin(Σ), which is the condition number of
Σ. Denote the index set of nonzero units in 𝜃(j) by S(j)

𝜃

. Suppose the columns of the precision matrix
Θ are k-sparse, where k = maxj=1,…,p s(j)

𝜃

and s(j)
𝜃

is the cardinality of S(j)
𝜃

. The important covariate
submatrix with nonzero coefficient is XS

𝛽

. For Group r, r = 1,…,R, let XG(r) be the samples in
Group r but with missing values replaced by

̃Xm(r)(Θ) = −Xo(r)Θo(r),m(r)Θ−1
m(r),m(r)

and ̃X∗
m(r) = ̃Xm(r)(Θ∗) = E(Xm(r)|Xo(r)), where Θ∗ is denoted as the true value of Θ. Let ̃X =

( ̃X⊤

G(1),…,
̃X⊤

G(R))⊤, and∗ = {Θ ∶ ||Θ − Θ∗||2 ⩽ d∗0Λ
−2
min(Σ)

3(Σ)
√

log p∕Nmin} be a neighborhood
of Θ∗ for some constant d∗0. Note that the neighborhood is asymptotically shrinking if
Λ−2

min(Σ)
3(Σ)

√
log p∕Nmin → 0. Define function 𝜇(𝜂) = b′(𝜂) and e = Y − 𝜇(XS

𝛽

𝛽S
𝛽

). Let ∗ =
{𝛽 ∶ ||𝛽 − 𝛽∗||∞ ⩽ d∗1

√
log p∕n} be a neighborhood of 𝛽∗ for some constant d∗1.
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HE et al. 9

We require the following regularity conditions to obtain the consistency of ̂𝛽.

Condition 2. (Restricted eigenvalue [RE] for Σ) The covariance matrix Σ satisfies

min
𝛿∈{u∈Rp−1∶||u

S(j)c
𝜃

||1≤7||u
S(j)
𝜃

||1}

𝛿

⊤Σ−j,−j𝛿

𝛿
⊤

𝛿

⩾ mj ⩾ mmin > 0, j = 1,…, p.

Condition 2 is similar to the condition (A2) in Yu et al. (2020). Its transformations for the
covariance estimation and missing data can also be found in Yuan (2010), Datta and Zou (2017),
and Loh and Wainwright (2012). This condition is used to obtain the bounds of the error of the
clean Lasso estimate.

Condition 3. (Bounded variance) The function b(𝜂) satisfies that Cb,min ⩽ b(𝜂) ⩽ Cb,max in its
domain, where Cb,min ⩽ Cb,max are some positive constants.

Condition 3 is the same as the condition 2 in Fan and Lv (2013). It is a mild condition and
commonly assumed in the GLM setting. The variances of all responses are bounded away from
zero and infinity under Condition 3.

Condition 4. (Ultrahigh dimensionality) The dimension of covariates holds that

(1) log(p) = O(N𝛼

∗

min) for some constant 𝛼∗ ∈ (0, 1);
(2) Λ−2

min(Σ)k
33(Σ)∕mmin

√
log p∕Nmin → 0;

(3) kV1
√

log p∕Nmin → 0.

Condition 4 allows the dimensionality p to increase up to exponentially fast with the minimum
pairwise sample size Nmin, which keeps pace with the efficiency of the covariance estimator. This
rate can also be found in Yu et al. (2020), where the eigenvalues of Σ are bounded away from zero
and infinity.

Condition 5. For Θ ∈ ∗, and 𝛽 ∈ ∗, ̃X satisfies

0 < C ̃X ,min ⩽ Λmin

( 1
n
̃X⊤

S
𝛽

̃XS
𝛽

)
⩽ Λmax

( 1
n
̃X⊤

S
𝛽

̃XS
𝛽

)
⩽ C ̃X ,max < ∞,

and

‖
‖
‖
‖

[ 1
n
̃X⊤

Sc
𝛽

H( ̃XS
𝛽

𝛽S
𝛽

) ̃XS
𝛽

] [ 1
n
̃X⊤

S
𝛽

H( ̃XS
𝛽

𝛽S
𝛽

) ̃XS
𝛽

]−1‖
‖
‖
‖∞

⩽ 𝜈n < ∞,

where H(⋅) = diag{b′′(⋅)} is a diagonal matrix.

The first part of Condition 5 assumes the lower and upper bounds for the eigenvalues of ̃XS
𝛽

and is analogous to the robust spark condition in Fan and Lv (2013) and Xue and Qu (2021).
Compared with the condition 5 of Xue and Qu (2021), our Condition 5 only controls the rel-
evant part of ̃X rather than entire ̃X . The second part of Condition 5 mainly controls the
correlation between true and noise covariates. When b′′(⋅) ≡ 1, that is, the case of Gaussian lin-
ear model, the second part of Condition 5 is similar to the irrepresentable condition (Zhao &
Yu, 2006).

Condition 6. (Error tail distribution) For Θ ∈ ∗, events 0 = {||n−1
̃X⊤e||∞ ⩽ 𝜆

𝛽
∕2} and 1 =

{||n−1
̃X⊤

S
𝛽

e||∞ ⩽ C ̃X ,e
√
(log n)∕n} satisfy P(0) = 1 − O(p−ce) and P(1) = 1 − O(n−ce) for some pos-

itive constant ce that can be sufficiently large for large enough C ̃X ,e.
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10 HE et al.

Condition 6 is similar to the error tail condition in Fan and Lv (2013) and Fan et al. (2019).
This condition can be satisfied with bounded or light-tailed errors. Details can be found in the
appendix A of Fan and Lv (2013).

Condition 7. For Θ ∈ ∗, it holds with probability at least 1 − O(n−cx̃ ) that

‖
‖
‖
‖

1
n
̃X⊤

S
𝛽

( ̃XS
𝛽

− XS
𝛽

)𝛽∗S
𝛽

‖
‖
‖
‖∞

⩽ C ̃X ,X
√
(log n)∕n,

and

sup
𝜂̃

‖
‖
‖
‖

1
n
̃X⊤

Sc
𝛽

H(𝜂̃)( ̃XS
𝛽

− XS
𝛽

)𝛽∗S
𝛽

‖
‖
‖
‖∞

⩽ 𝜆
𝛽
∕4,

where 𝜂̃ lies between ̃XS
𝛽

𝛽

∗
S
𝛽

and XS
𝛽

𝛽

∗
S
𝛽

.

Condition 7 is similar to the condition 7 in Xue and Qu (2021). A brief discussion on this
condition and the proofs of the following theorems are provided in Appendix S1.

Theorem 1. (Estimation loss for ̂Θ) Under Conditions 1–4, if 𝜆
𝜃
= O(V1

√
log p∕Nmin), it holds that

||̂Θ − Θ∗||2 ⩽ Op

{
Λ−1

min(Σ)k
33(Σ)∕mmin

√
log p∕Nmin

}
.

Theorem 1 states that ̂Θ maintains estimation consistency when the number of covariates
grows exponentially. If we assume that the eigenvalues of Σ are bounded, then the convergence
rate is the same as that in Yu et al. (2020).

Theorem 2. (Sign consistency and oracle inequality for ̂
𝛽) Under Conditions 1–7, if 𝜆

𝛽
=

O(
√

log p∕n), and 𝜈n ⩽ C ̃X ,e∕8, with probability at least 1 − O(n−C2), it holds simultaneously that

(a) (Sign consistency) sgn( ̂𝛽) = sgn(𝛽∗);
(b) (Estimation loss) || ̂𝛽 − 𝛽∗||2 ⩽ C1C−1

b,minCb,maxC−1
̃X ,min

√
s
𝛽
(log p)∕n, where C1 is some positive

constant and C2 = min{ce, cx̃}.

Theorem 2 shows the sparsity and consistency of ̂
𝛽. The convergence rate in Theorem 2 is

consistent with that obtained in Fan and Lv (2013) and Xue and Qu (2021).

4 SIMULATION STUDY

In this section, we conduct simulation studies based on three commonly used GLMs, including
linear, logistic, and Poisson regression models. For each model, we compare the proposed method
with existing methods: (1) Stacked: The imputation method proposed by Xue and Qu (2021)
imputes missing blocks multiple times and stacks the imputed results together. This method

replaces (Xo(r),Xm(r))with
{(

Xo(r), ̂E(Xm(r)|Xo′1(r))
)
⊤

,…,

(
Xo(r), ̂E(Xm(r)|Xo′qr

(r))⊤
)}⊤

and YG(r) with

(Y⊤

G(r),…,Y⊤

G(r))
⊤ for final variable selection. (2) Averaged: The imputed value is the average of

the above-mentioned stacked estimates. (3) Zero: Missing values are filled with zero, the mean
of the observed values of each predictor. (4) SoftImpute: Missing values are imputed via the
iterative soft-thresholded singular value decomposition method (Mazumder et al., 2010). (5) CC:
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HE et al. 11

Only complete cases are used for variable selection if observations with complete modalities
exist.

For each of the following setups, we repeat the simulation 100 times and set B = 1000. To
evaluate and compare different methods, we use four measures, namely, 𝓁2 estimation error || ̂𝛽 −
𝛽

∗||2, denoted as 𝓁2-ER; false-positive rate (FPR); false-negative rate (FNR); and the elapsed time
(in seconds) using R.

4.1 Missing completely at random

We first generate the data without violation of our precondition about the missing mecha-
nism, which is satisfied when the modalities of observations are missing completely at random
(MCAR) as in the setting of Yu et al. (2020). For each model, the data are generated under
two settings: (I) the dataset includes samples with complete observations and (II) the dataset
does not includes samples with complete observations. For Setting (I), three modalities are
considered with 50 predictors for each modality (p = 150). The dataset is composed of 200
samples with complete observations, 200 samples with observations from the first and sec-
ond modalities, 200 samples with observations from the second and third modalities, and 200
samples with observations from the first and third modalities, as shown in the left panel of
Figure 1. Thus, the total sample size is n = 800. For Setting (II), three modalities are consid-
ered with 20 predictors for each modality (p = 60). The dataset is composed of 500 samples
with observations from the first and second modalities, 500 samples with observations from the
second and third modalities, and 500 samples with observations from the first and third modal-
ities. Thus, the total sample size is n = 1500. For each setting, we consider three models as
follows:

Model 1 (linear regression): We first consider the following linear regression model:

Y = X𝛽 + 𝜖, (10)

where 𝜖 = (𝜖1, 𝜖2,…, 𝜖n) ∼ (0, 0.82In), In is the n-dimensional identity matrix, and
(Xi1,…,Xip)⊤ ∼ (0,Σ). The true regression coefficient vector is set by 𝛽 = (0.51⊤2 , 0

⊤

48,

0.51⊤2 , 0
⊤

48, 0.51⊤2 , 0
⊤

48 )
⊤

. In Setting (I), Σ is a block diagonal matrix composed of 30 sub-
blocks, where each subblock is a 5 × 5 square matrix with ones on the main diagonal and
0.5 elsewhere. In Setting (II), Σ is given by 𝜎jk = 0.5|j−k|. The true coefficient vector is set by
𝛽 = (0.51⊤4 , 0

⊤

16, 0.51⊤4 , 0
⊤

16, 0.51⊤4 , 0
⊤

16)
⊤

.

Model 2 (logistic regression): We consider the logistic regression model (1) with parameter 𝜉i
for response Yi given by

𝜉 = (𝜉1,…, 𝜉n)⊤ = X𝛽, (11)

and Y = (y1,…, yn)⊤ is sampled from the Bernoulli distribution with the success probability vector
of (e𝜉1∕(1 + e𝜉1),…, (e𝜉n∕(1 + e𝜉n))⊤. Other settings remain the same as those in Model 1.

Model 3 (Poisson regression): We generate Y from the Poisson distribution with mean vector
(e𝜉1

,…, e𝜉n)⊤, where 𝜉 = (𝜉1,…, 𝜉n)⊤ is given in (11). For Setting (II), the true coefficient vector
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12 HE et al.

T A B L E 1 Performance comparison with missing completely at random data.

Linear Logistic Poisson

Method 𝓵2-ER FPR FNR Time 𝓵2-ER FPR FNR Time 𝓵2-ER FPR FNR Time
Setting (I): n = 800, p = 150, with complete observations

Stacked 0.576 0.392 0.000 31.66 0.985 0.433 0.000 35.18 0.708 0.504 0.000 35.89

(std) 0.065 0.132 0.000 1.37 0.117 0.108 0.000 0.48 0.075 0.130 0.000 0.61

Averaged 0.317 0.009 0.000 31.41 0.634 0.016 0.002 32.60 0.455 0.021 0.003 32.70

(std) 0.072 0.007 0.000 1.36 0.097 0.018 0.017 0.35 0.099 0.025 0.033 0.24

Zero 0.389 0.018 0.000 0.23 0.661 0.022 0.002 1.09 0.499 0.023 0.002 1.25

(std) 0.055 0.007 0.000 0.02 0.086 0.022 0.017 0.05 0.091 0.025 0.017 0.09

SoftImpute 0.381 0.016 0.000 653.1 0.656 0.022 0.002 642.5 0.490 0.023 0.002 636.9

(std) 0.059 0.007 0.000 16.04 0.094 0.025 0.017 8.99 0.093 0.024 0.017 23.05

CC 0.333 0.016 0.000 0.25 0.863 0.028 0.203 0.61 0.398 0.057 0.000 2.86

(std) 0.084 0.019 0.000 0.02 0.125 0.029 0.173 0.07 0.088 0.020 0.000 0.52

Proposed 0.240 0.011 0.000 38.83 0.503 0.020 0.007 39.10 0.360 0.020 0.005 39.11

(std) 0.065 0.009 0.000 5.23 0.130 0.022 0.033 5.08 0.101 0.043 0.029 5.32

Setting (II): n = 1500, p = 60, without complete observations

Stacked 0.432 0.098 0.000 5.52 0.854 0.150 0.001 7.46 0.631 0.358 0.008 8.32

(std) 0.053 0.056 0.000 0.07 0.069 0.076 0.008 0.23 0.101 0.174 0.038 0.43

Averaged 0.422 0.048 0.000 5.46 0.905 0.049 0.003 6.36 0.625 0.077 0.047 6.63

(std) 0.057 0.026 0.000 0.07 0.079 0.034 0.014 0.18 0.120 0.078 0.093 0.18

Zero 0.466 0.057 0.000 0.15 0.911 0.067 0.003 1.06 0.646 0.090 0.051 1.30

(std) 0.045 0.023 0.000 0.01 0.073 0.045 0.014 0.05 0.116 0.082 0.098 0.15

SoftImpute 0.462 0.059 0.000 181.1 0.917 0.064 0.002 181.2 0.639 0.092 0.048 183.6

(std) 0.048 0.025 0.000 4.09 0.067 0.038 0.012 5.38 0.119 0.084 0.095 5.00

Proposed 0.300 0.033 0.000 4.89 0.638 0.035 0.002 5.79 0.555 0.077 0.048 6.09

(std) 0.070 0.034 0.000 0.07 0.085 0.031 0.012 0.17 0.167 0.085 0.079 0.22

Note: The SDs of 𝓁2-ER, false-positive rate (FPR), false-negative rate (FNR), and time (in s) are listed in the corresponding
second rows.

is changed to 𝛽 = (0.41⊤4 , 0
⊤

16, 0.41⊤4 , 0
⊤

16, 0.41⊤4 , 0
⊤

16)
⊤. Other settings remain the same as those in

Model 1.
Table 1 summarizes the comparison results for different methods. We obtain the following

findings. First, the proposed method achieves the lowest estimation error 𝓁2-ER, FPR, regardless
of the models considered. Second, the absence of complete observations does not significantly
hinder the performance of the proposed method, since the proposed method can incorporate
correlation information among covariates in every group. Third, the computing time of the pro-
posed method is not the least because compared with other regression imputation-type methods
that only regress missing covariates on observed ones, our approach regresses each covariate on
all the other covariates. However, our method is much faster than the matrix completion-type
method “SoftImpute.” Moreover, we notice that the SDs are slightly higher for the proposed than
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HE et al. 13

T A B L E 2 Performance comparison with missing completely at random data under additional settings.

Setting (III) Setting (IV)

Methods 𝓵2-ER FPR FNR Time 𝓵2-ER FPR FNR Time
Stacked 0.961 0.315 0.035 125.52 0.661 0.243 0.000 7.96

(std) 0.149 0.113 0.035 232.84 0.116 0.137 0.000 0.45

Averaged 0.484 0.019 0.007 125.20 0.497 0.027 0.011 7.95

(std) 0.147 0.030 0.034 232.56 0.150 0.025 0.060 0.45

Zero 0.490 0.017 0.007 0.23 0.499 0.027 0.000 0.10

(std) 0.145 0.017 0.034 0.17 0.131 0.026 0.000 0.01

SoftImpute 0.491 0.017 0.007 261.81 0.521 0.032 0.005 44.78

(std) 0.135 0.024 0.034 208.04 0.129 0.026 0.030 51.87

CC 0.491 0.023 0.000 0.17 0.506 0.051 0.022 0.11

(std) 0.139 0.023 0.000 0.13 0.165 0.042 0.095 0.01

Proposed 0.455 0.022 0.007 187.88 0.332 0.030 0.000 5.53

(std) 0.194 0.036 0.034 359.66 0.101 0.031 0.000 0.33

Note: The SDs of 𝓁2-ER, false-positive rate (FPR), false-negative rate (FNR), and time (in s) are listed in the corresponding
second rows.

other methods in most cases because our algorithm involves a more complicated intermediate
procedure that may induce additional variations in estimation.

To compare the proposed method with existing ones under a higher dimension with p > n,
we consider Setting (III), which is similar to Setting (I) but with 60 predictors for each modality
(p = 180). The dataset comprises 100 samples with complete observations and 20 from each of
the three modality combinations, yielding a total sample size of n = 160. We consider Model 1
with the same setup, except that Σ is a block diagonal matrix composed of 36 subblocks. The true
coefficient vector is set by 𝛽 = (0.51⊤2 , 0

⊤

58, 0.51⊤2 , 0
⊤

58, 0.51⊤2 , 0
⊤

58)
⊤

. Table 2 (left panel) summarizes
the comparison results. Again, the proposed method has the lowest estimation error 𝓁2-ER and
small FPR and FNR. Except for the naive “Zero” and “CC” approaches, all the methods take
longer computing times, but our method is still more efficient than the matrix completion-type
method “SoftImpute.”

Furthermore, we consider a heavy-tailed case (Setting (IV)) to compare the performance of
the proposed and existing methods when the normality assumption does not hold. Setting (IV)
is similar to Setting (III) with the same configuration of the sample size but with 20 predictors
for each modality (p = 60). We consider Model 1 with the same setup, except that 𝜖i ∼

√
4∕5t(4),

where t(4) is the t distribution with the degree of freedom 4, and Σ is a block diagonal matrix com-
posed of 12 subblocks. The true coefficient vector is set by 𝛽 = (0.51⊤2 , 0

⊤

18, 0.51⊤2 , 0
⊤

18, 0.51⊤2 , 0
⊤

18)
⊤

.

Table 2 (right panel) presents the comparison results. We can draw similar conclusions; the pro-
posed method has the lowest estimation error 𝓁2-ER, small values of FPR and FNR, and is much
more efficient than “SoftImpute.”

Finally, to examine whether the choice of B affects the estimation results, we re-analyze the
datasets generated under Setting IV and Model 1 using B = 500. The results (not reported) show
that the performance of our method is stable regardless of the values of B.

The R code can be downloaded at https://github.com/Yifan22Oct/BlockmissingGLM.
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14 HE et al.

T A B L E 3 Performance comparison with missing at and not at random (MAR and MNAR) data.

MAR MNAR

Methods 𝓵2-ER FPR FNR Time 𝓵2-ER FPR FNR Time
Stacked 0.389 0.189 0.000 8.94 0.444 0.271 0.000 21.20

(std) 0.071 0.126 0.000 0.36 0.076 0.121 0.000 58.11

Averaged 0.314 0.014 0.000 8.86 0.330 0.023 0.000 21.09

(std) 0.067 0.015 0.000 0.35 0.054 0.017 0.000 58.11

Zero 0.312 0.017 0.000 0.14 0.328 0.018 0.000 0.16

(std) 0.057 0.014 0.000 0.01 0.064 0.014 0.000 0.01

SoftImpute 0.311 0.014 0.000 213.73 0.336 0.021 0.000 368.20

(std) 0.065 0.016 0.000 266.83 0.059 0.025 0.000 461.34

CC 0.377 0.039 0.000 0.11 0.522 0.063 0.000 0.12

(std) 0.091 0.029 0.000 0.01 0.081 0.049 0.000 0.03

Proposed 0.163 0.009 0.000 6.20 0.205 0.018 0.000 10.57

(std) 0.049 0.011 0.000 0.31 0.052 0.018 0.000 2.24

Note: The SDs of 𝓁2-ER, false-positive rate (FPR); false-negative rate (FNR), and time (in s) are listed in the corresponding
second rows.

4.2 Missing at/not at random

In this section, we compare the proposed and existing methods in terms of missing at and not
at random (MAR and MNAR) data. Similar to Setting (I), three modalities are considered with
20 predictors for each modality and we add the fourth modality with 20 predictors (X61,…,X80).
In Modality 4, covariates are fully observed across all groups. Similar to the setting 1 in Xue and
Qu (2021), each sample is assigned to the complete-case group with probability proportional to
exp(−ai), i = 1,…,n, where ai = 10(Xi,61 + · · · + Xi,80) in generating MAR data and ai = yi in gen-
erating MNAR data. In addition, Σ is set to a block diagonal matrix composed of 16 subblocks,
where each subblock is a 5 × 5 square matrix with ones on the main diagonal and 0.5 elsewhere.
For simplicity, we only consider Model 1 (linear regression) and assign the regression coefficients
as 𝛽 = (0.51⊤2 , 0

⊤

18, 0.51⊤2 , 0
⊤

18, 0.51⊤2 , 0
⊤

18, 0.51⊤2 , 0
⊤

18)
⊤

. Other settings remain unchanged.
Table 3 provides a comparison of the estimation performance of the proposed and existing

methods with MAR and MNAR data. The proposed method can reduce the selection bias caused
by missingness and outperform the other methods even when the missing mechanism gets more
complicated.

5 REAL DATA ANALYSIS

In this section, we compare the proposed and existing methods in the ADNI data analysis. One of
the main goals of the ADNI study is to recognize the biomarkers that can be used in clinical diag-
nosis and classification. We treat the binary diagnosis of whether a subject has AD or not as the
response. The biomarkers to be selected are extracted from three sources in the ADNI-1 phase,
namely, MRI, CSF, and proteomics datasets. The quantitative variables from MRI were processed
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HE et al. 15

F I G U R E 2 Pattern of block-wise missingness in the Alzheimer’s Disease Neuroimaging Initiative dataset.

and measured by the UCSF team after cortical reconstruction and volumetric segmentation with
the FreeSurfer image analysis site (Xiang et al., 2014). CSF samples were acquired at the Univer-
sity of Pennsylvania Medical Centre (Tzourio-Mazoyer et al., 2002). The proteomics biomarkers
were delivered by the Biomarkers Consortium Plasma Proteomics Project. We screen out 100 fea-
tures from MRI and proteomics source, respectively, through MV-SIS (Cui et al., 2015). For the
CSF modality, five biomarkers, including amyloid 𝛽 (A𝛽42), CSF total tau (t-tau), tau hyperphos-
phorylated at threonine 181 (p-tau), and two ratios (A𝛽42∕A𝛽40 and A𝛽42∕A𝛽38), were used.
As shown in Figure 2, the dataset is composed of (1) 337 subjects with complete MRI, CSF, and
proteomics features, of which 93 were AD, (2) 228 subjects with only MRI and proteomics fea-
tures, of which 19 were AD, (3) 55 subjects with only MRI and CSF features, of which none was
AD, and (4) 195 subjects with only MRI features, of which 80 were AD. Thus, p = 205, n = 815,
and R = 4.

A test set of 100 samples is randomly drawn from the complete subjects 100 times to compare
the performance of the proposed and existing methods, and the remaining subjects are used for
training. For each data splitting, we fit the logistic regression model with 𝓁1 penalty to the training
data. Table 4 reports the mean and SD of the classification errors and the mean model size for
each method. Our proposed method exhibits the lowest classification error and selects relatively
fewer biomarkers compared with the other methods.

Table S1 presents the biomarkers selected by each method based on the ADNI dataset. The
proposed method determines 54 variables, including three CSF biomarkers, 16 MRI biomark-
ers, and 35 proteomics biomarkers. As shown in Table S1, our method tends to select variables
with higher votes. At least four other methods also select most of the variables selected by our
method. A few exceptions include t-tau, A𝛽4240, ST90TA, Osteopontin, and Vascular Cell Adhe-
sion Molecule-1. However, many previous studies have reported the associations between these
biomarkers and AD progression. For example, Mattsson et al. (2016, 2018) found that patients
with AD dementia had higher CSF t-tau than controls. Kwak et al. (2020) provided evidence to
show that A𝛽4240 ratio reduction plays a critical role in AD therapy. Greene et al. (2010) revealed
that the cortical thickness of the inferior parietal lobule in the right hemisphere (“ST90TA” is
its average value) was significantly different among Cognitively Normal (NC), Mild Cognitive
Impairment (MCI), and AD patients. Comi et al. (2010), Sun et al. (2013), and Carecchio and
Comi (2011) asserted that the level of osteopontin correlates with cognitive declines because
osteopontin is a molecule involved in macrophage recruitment and activation and implicated in
neurodegeneration. Verbeek et al. (1994, 1995), and Huang et al. (2015) demonstrated the clini-
cal significance of Vascular Cell Adhesion Molecule-1 to white matter disintegrity in Alzheimer’s
dementia based on the relationship between the receptor of T cell and the development of mul-
tiple sclerosis. The above evidence implies that the proposed method provides the analyst with a
more targeted list of biomarkers sets, which can serve as a starting point for further study of AD
pathogenesis.
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T A B L E 4 Performance comparison in the Alzheimer’s Disease neuroimaging initiative data analysis.

Methods FR Size Time
Stacked 0.1246 93.4500 26.9952

(std) 0.0254 17.9749 0.5135

Averaged 0.1199 51.9300 26.3098

(std) 0.0313 10.7217 0.4997

Zero 0.1210 52.6200 1.5653

(std) 0.0307 9.2188 0.1130

SoftImpute 0.1189 52.1300 221.3321

(std) 0.0287 10.8550 2.5717

CC 0.1258 46.4200 0.2649

(std) 0.0322 11.9892 0.0195

Proposed 0.1142 49.8500 37.2649

(std) 0.0322 9.1236 1.7647

Note: FR denotes the misclassification rate. Size denotes the mean model size. The SDs of FR, Size, and time (in s) are listed in
the corresponding second rows.

6 CONCLUSION

This paper proposes a single regression imputation method with multi-block missing data for
high-dimensional GLMs. We develop a sparse inverse covariance-matrix estimation procedure
by fully utilizing the structure of multi-block missing data from multi-modalities. The proposed
estimator is positive semidefinite, and its 𝓁2 error bound is established via linear programming.
Moreover, we impute the missing blocks through their means conditional on the observed blocks.
Finally, a Lasso estimator of the coefficients in the GLM is obtained with the whole multi-
modality data after imputation. Given that its imputation step is independent of the subsequent
variable selection for GLM, the proposed method, which is markedly different from the existing
approaches in dealing with multiblock missing data, can easily be extended to the other model
context. Another superiority of the proposed method is that it mainly synthesizes the correlation
information between covariates, and thus, can be implemented without complete observations.
That is one of the main differences between the proposed and traditional regression imputation
methods.

The derived theoretical results guarantee the effectiveness of the proposed method, and the
simulation studies confirm that our approach is advantageous and more robust than several com-
peting methods regardless of missingness mechanisms. An application to the ADNI study for
identifying high-risk potential AD patients with biomarkers also demonstrates the utility and
superiority of the proposed method. Finally, the proposed method conducts single imputation,
but it can couple with the idea of multiple imputation (Harel & Zhou, 2007; Royston, 2004).
Nevertheless, such advancement requires further investigation.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at
the end of this article.
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